Practical Introduction for Parallel Optimization

Makoto Nakajima

Federal Reserve Bank of Philadelphia

April 2009
Some General Tips

- Make sure the serial code works flawlessly before parallelizing.

- Think about brute-force parallelization (running multiple codes with different parameter values) before using parallel programming.

- Exploit all the compiler options before parallelizing. But start with lower-level optimization option when parallelizing, to avoid conflict between parallelization and the compiler’s optimization algorithm.

- Output everything and make sure values which are supposed to be shared are actually shared across nodes.

- Learn how to kill all the processes in all nodes. If your code screws up, CLEAN UP YOUR MESS from all nodes.
The Set-Up

The Problem

\[
\min_{x \in \mathbb{R}^n} f(x)
\]

- Two natural ways to use parallelization:
 - Parallelize \(f(x) \)
 - Parallelize \(\min \) → focus of this presentation.
Comparison

- **Parallelize** $f(x)$
 - More complicated.
 - Once parallelized, can be used with any optimization algorithm.
 - Steady gain from parallel.

- **Parallelize** \min
 - Less complicated. No need to touch inside $f(x)$.
 - Many ready-made codes available.
 - Gain from parallel could vary.
Motivating Example [1/2]

- You want to "calibrate" the standard Aiyagari economy with:
 - Ad-hoc borrowing constraint $b < 0$
 - Labor-leisure decision (Cobb-Douglas between consumption and leisure)
 - Labor productivity shock follows AR(1)

- You want to calibrate:
 - Discount factor β
 - Borrowing limit b
 - Persistence of earnings shock ρ_p
 - Standard deviation of the earnings shock σ_p
 - Cobb-Douglas parameter between consumption and leisure η

- To match, simultaneously:
 - $\frac{K}{Y} = 2.75$
 - Proportion of borrowers = 10%
 - Average proportion of time spent on working = 33%
 - Earnings Gini = 0.4
 - Autocorrelation of earnings = 0.9
Motivating Example [2/2]

- \(x = (\beta, b, \rho_p, \sigma_p, \eta) \)

- Obviously, \(n = 5 \) (Dimension of \(x \))

- \(t^* = (2.75, 0.1, 0.33, 0.4, 0.9) \)

- \(\tilde{t}(x) \) is generated by the model, given the steady state of the model with a set of parameters \(x \).

- \(w \) is a vector of weights attached to each of the targets. (assume it is fixed)

- \(f(x) = \sum_{i=1}^{n} w_i (t_i^* - \tilde{t}_i(x))^2 \)
Method 1: Simplex (Nelder-Mead) Method

- Basic idea of the simplex method (details omitted):
 1. Start from \(n + 1 \) points: \(x_0, x_1, \ldots, x_n \)
 2. Evaluate \(n + 1 \) points and obtain \(f_0, f_1, \ldots, f_n \)
 3. Pick the point with the largest (worst) \(f \). Assume it is \(x_n \).
 4. Replace \(x_n \) by \(\tilde{x}_n \).

- Naturally serial algorithm (not parallel)!

- Lee and Wiswall (2007):
 - Suppose we use \(m < n \) nodes.
 - Replace the worst \(m \) points simultaneously in Step 3 and 4.

- Gain from parallelization constrained by \(n > m \).
Method 2: Genetic Algorithm (GA)

- Basic idea of the very standard GA:
 1. Population of size N: x_1, \ldots, x_N
 2. Each x_i carries n chromosomes.
 3. Pick m pairs of parents. Assign a higher probability for x_i with a smaller error, so that the fit have better chances of mating.
 4. From each pair of parents, create two offsprings. Could use:
 - Crossover (mix chromosomes of parents)
 - Mutation (Could be completely random draw of x)
 5. Replace the $2m$ x’s with largest errors by $2m$ offsprings.

- Naturally parallel!
 (Procedure for m pairs of parents are independent of others).

- Hybrid (with deterministic optimization algorithm) is also used.